石油学报(石油加工) ›› 2021, Vol. 37 ›› Issue (1): 10-23.doi: 10.3969/j.issn.1001-8719.2021.01.002

• 研究报告 • 上一篇    下一篇

2-苯基环己硫醇在γ-Al2O3和SiO2负载的WS2催化剂上的脱硫反应

刘盛男1,3,周学荣1,3,李翔2,王安杰1,3,王琳1,3   

  1. 1. 大连理工大学 精细化工国家重点实验室,辽宁 大连 116024;
    2. 天津科技大学 化工与材料学院,天津 300457;
    3. 辽宁省高校石油化工技术与装备重点实验室,辽宁 大连 116024
  • 收稿日期:2020-02-07 修回日期:2020-10-10 出版日期:2021-01-25 发布日期:2021-01-12
  • 通讯作者: 李翔,男,教授,博士,从事加氢精制及多孔材料研究,Tel:022-60602741,E-mail:lixiang@tust.edu.cn E-mail:lixiang@dlut.edu.cn
  • 作者简介:第一作者:刘盛男,男,硕士,从事加氢精制研究,E-mail:liushengnan229@163.com
  • 基金资助:

    国家自然科学基金项目(21673029和21603024)及天津市自然科学基金重点项目(19JCZDJC31700)资助

Desulfurization of 2-Phenylcyclohexanethiol Over WS2 Catalysts Supported on γ-Al2O3 and SiO2

LIU Shengnan1,3, ZHOU Xuerong1,3, LI Xiang2, WANG Anjie1,3, WANG Lin1,3   

  1. 1. State Key Laboratory of fine Chemicals, Dalian University of Technology, Dalian 116024, China;
    2. School of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China;
    3. Liaoning Key Laboratory of Petrochemical Technology and Experiment, Dalian 116024, China
  • Received:2020-02-07 Revised:2020-10-10 Online:2021-01-25 Published:2021-01-12

摘要: 合成了2-苯基环己硫醇(2-PCHT);通过等体积浸渍法制备了分别以γ-Al2O3和SiO2作载体的WS2催化剂,采用X射线衍射(XRD)、N2物理吸附和透射电镜(TEM)技术对催化剂进行表征。在临氢和非临氢(Ar)条件下研究了2-PCHT在WS2/ Al2O3和WS2/SiO2催化剂上的脱硫反应。结果表明:在240 ℃和5.0 MPa H2条件下,2-PCHT在WS2催化剂上主要通过β消除、氢解和脱氢3条平行路径脱硫,其中β消除和氢解并重,β消除反应速率快于氢解;非临氢条件下,主要通过β消除、C-S键均裂(或氢解)及脱氢3条平行路径脱硫,并以β消除为主;哌啶对β消除路径的抑制作用最大、对脱氢路径作用次之,但对氢解几乎没有影响,并促进了C-S键均裂;WS2/ Al2O3的反应活性优于WS2/SiO2,可能与其活性组分的分散度较高有关;临氢条件下,2-PCHT的反应动力学可以用假一级模型描述;但其在非临氢条件下则不能用简单的幂函数拟合,可能归因于环烷基C-S键断裂机制的复杂性。

关键词: 2-苯基环己硫醇;WS2, 脱硫;环烷基C-S键;哌啶;SiO2, γ-Al2O3

Abstract: 2-Phenylcyclohexanethiol (2-PCHT) was synthesized. WS2/Al2O3 and WS2/SiO2 were prepared by the incipient wetness impregnation, and characterized by X-ray diffraction (XRD), N2 physical adsorption and transmission electron microscope (TEM). The desulfurizations of 2-PCHT over WS2 catalysts supported on γ-Al2O3 and SiO2 were investigated in the presence or absence of H2. At 240 ℃ and under 5.0 MPa H2, 2-PCHT undergoes desulfurization over the supported WS2 catalysts via three parallel pathways: β elimination, hydrogenolysis and dehydrogenation. β elimination and hydrogenolysis are the two major pathways, and the reaction velocity in β elimination pathway is much faster than that in the hydrogenolysis pathway. Under Ar atmosphere, the parallel pathways are β elimination, homolytic C-S bond cleavage or hydrogenolysis, and dehydrogenation, withβ elimination serving as the dominate pathway. Piperidine strongly inhibits the β elimination pathway and the dehydrogenation pathway. It does not affect the hydrogenolysis pathway, and facilitates the homolytic C-S bond cleavage pathway. WS2/Al2O3 is superior to WS2/SiO2 in the desulfurization of 2-PCHT, which is due to the higher dispersion of active phase. The kinetics of the desulfurization of 2-PCHT under H2 is reasonably fitted by a pseudo-first-order model, whereas that under Ar cannot be described by the power-law rate expression, suggesting that the desulfurization of 2-PCHT is complex.

Key words: 2-phenylcyclohexanethiol, WS2, desulfurization, cycloalkyl C-S bond, piperidines, SiO2, γ-Al2O3