[1] ZHANG S, LIU D, DENG W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. [2] SAHU R, SONG B J, IM J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 12-24. [3] CALDERóN C J, ANCHEYTA J. Modeling of slurry-phase reactors for hydrocracking of heavy oils[J]. Energy & Fuels, 2016, 30(4): 2525-2543. [4] LI C, SONG J, WANG X, et al. Effect of sodium dodecyl benzenesulfonate on the coke formation during slurry-bed hydrocracking of an atmospheric residue from Karamay[J]. Energy & Fuels, 2015, 29(1): 52-57. [5] 管翠诗, 王宗贤, 郭爱军, 等. 悬浮床加氢裂化水溶性催化剂的筛选与表征[J]. 石油学报(石油加工), 2003, 31(5): 434-438. (GUAN Cuishi, WANG Zongxian, GUO Aijun, et al. Study on slurry catalyst for Kelamayi residue hydrocracking[J]. Journal of Fuel Chemistry and Technology, 2003, 31(5): 434-438.) [6] QUITIAN A, ANCHEYTA J. Experimental methods for developing kinetic models for hydroracking reactions with slurry-phase catalyst using batch reactors[J]. Energy & Fuels, 2016, 30(6): 4419-4437. [7] CASTA?EDA L C, MU?OZ J A D, ANCHEYTA J. Combined process schemes for upgrading of heavy petroleum[J]. Fuel, 2012, 100: 110-127. [8] KUMAR S, SRIVASTAVA M. Influence of presence/addtion of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks[J]. Fuel, 2016, 173: 169-178. [9] ANCHEYTA J, CENTENO G, TREJO F, et al. Changes in asphaltene properties during hydrotreating of heavy crudes[J]. Energy & Fuels, 2003, 17(5): 1233-1238. [10] 刘晨光, 朱春媚, 靳力文, 等. 减压渣油热反应特性与原料组成的关联[J]. 石油学报(石油加工), 1999, 15(1): 1-7. (LIU Chenguang, ZHU Chunmei, JIN Liwen, et al. Relationship between thermal reactivity and chemical composition of vacuum residues[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1999, 15(1): 1-7.) [11] 刘东, 张宏玉, 马魁菊, 等. 不同催化体系下渣油悬浮床加氢的结焦状况[J]. 石油学报(石油加工), 2007, 23(4): 39-43. (LIU Dong, ZHANG Hongyu, MA Kuiju, et al. The coking of residual slurry phase hydrocracking with different catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(4): 39-43.) [12] 崔瑞利, 赵愉生, 薛鹏, 等. 固定床渣油加氢处理装置催化剂积炭分析与表征[J]. 石油炼制与化工, 2012, 43(1): 45-48. (CUI Ruili, ZHAO Yusheng, XUE Peng, et al. Characterization of coke on spent catalysts from fixed-bed hydrotreating unit processing residue feed[J]. Petroleum Processing and Petrochemicals, 2012, 43(1): 45-48.) [13] 金环年, 邓文安, 阙国和. 渣油胶质和沥青质在分散型催化剂作用下的临氢热反应行为[J]. 石油炼制与化工, 2006, 37(11): 11-14. (JIN Huannian, DENG Wenan, QUE Guohe. The thermal reaction behavior of resin and asphaltene over dispersed catalyst in the presence of hydrogen[J]. Petroleum Processing and Petrochemicals, 2006, 37(11): 11-14.) [14] RISPOLI G, SANFILIPPO D, AMOROSO A. Advanced hydrocracking technology upgrades extra heavy oil[J]. Hydrocarbon Processing, 2009, 88(12): 39-46. [15] MONTANARI R, MARCHIONNA M, ROSI S, et al. Process for the conversion of heavy charges such as heavy crude oils and distillation residues: US, 7691256B2[P], 2010. [16] SOLARI R B. HDH hydrocracking as an alternative for high conversion of the bottom of the barrel[C]. NPRA Annual Meeting, San Antonio, March 25, 1990. [17] GILLIS D, HOUDE E, ROSSI R. Residue conversion solutions meeting north American emissions control area and MARPOL annex VI marine fuel regulations[C]. NPRA Annual Meeting, Phoenix, March 21, 2010. [18] BUTLER G, SPENCER R, COOK B. Maximize liquid yield from extra heavy oil: Next-generation hydrocracking processes increase conversion of residues[J]. Hydrocarbon Processing, 2009, 88(9): 51-55. [19] DU H, LIU D, LI M, et al. Effects of the temperature and initial hydrogen pressure on the isomerization reaction in heavy oil slurry-phase hydrocracking[J]. Energy & Fuels, 2015, 29(2): 626-633. [20] 张数义, 邓文安, 刘东, 等. 重质油悬浮床加氢技术新进展[J ]. 炼油技术与工程, 2007, 37(2): 1-6. (ZHANG Shuyi, DENG Wenan, LIU Dong, et al. New development of slurry-bed heavy oil hydrocracking process[J]. Petroleum Refinery Engineering, 2007, 37(2): 1-6.) [21] SPEIGHT J G. New approaches to hydroprocessing[J]. Catalysis Today, 2004, 98(1): 55-60. [22] LIU D, LI M, DENG W, et al. Reactivity and composition of dispersed Ni catalyst for slurry-phase residue hydrocracking[J]. Energy & Fuels, 2010, 24(3): 1958-1962. [23] ELIZALDE I, ANCHEYTA J. On the detailed solution and application of the continuous kinetic lumping modeling to hydrocracking of heavy oils[J]. Fuel, 2011, 90(12): 3542-3550. [24] CUI M, LI C, WANG J, et al. Exploratory study for the mechanism of surfactant restraining the coke on the surface of the reactor in residue slurry phase hydrocracking[J]. Energy & Fuels, 2016, 30(4): 2941-2947. [25] 邓文安, 王磊, 李传, 等. 马瑞常压渣油悬浮床加氢裂化反应生焦过程[J]. 石油学报(石油加工), 2017, 33(2): 291-302. (DENG Wenan, WANG Lei, LI Chuan, et al. The coke formation process during slurry-bed hydrocracking of Merey atmospheric residue[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(2), 291-302.) [26] DENG W, DU J, LI C, et al. Exploratory investigation for the coking behavior during slurry-bed hydrocracking of coal tar atmospheric residue[J]. Energy & Fuels, 2016, 30(10): 8626-8629. [27] 刘东, 张继昌, 赵英男, 等. 渣油悬浮床加氢分散型Mo催化剂硫化程度的XPS分析[J]. 石油学报(石油加工), 2007, 23(5): 33-37. (LIU Dong, ZHANG Jichang, ZHAO Yingnan, et al. XPS study on the sulfurization of dispersed Mo catalyst for slurry-bed hydroprocessing of residue[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(5), 33-37.) [28] BARA C, PLAIS L, LARMIER K, et al. Aqueous-phase preparation of model HDS catalysts on planar alumina substrates: Support effect on Mo adsorption and sulfidation[J]. Journal of the American Chemical Society, 2015, 137(50): 15915-15928. |