石油学报(石油加工) ›› 2019, Vol. 35 ›› Issue (5): 973-980.doi: 10.3969/j.issn.1001-8719.2019.05.019

• 研究报道 • 上一篇    下一篇

生物质热解油提质及其氧化动力学分析

梅德清, 王铖, 任吴越, 戴鹏飞, 郭冬梅, 杜家益   

  1. 江苏大学 汽车与交通工程学院,江苏 镇江 212013
  • 收稿日期:2018-07-03 修回日期:2019-03-03 出版日期:2019-09-25 发布日期:2020-04-01
  • 通讯作者: 梅德清,男,副教授,博士,从事发动机排放控制与新能源研究,E-mail:meideqing@ujs.edu.cn E-mail:meideqing@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51761145011,51876082,51876133)、江苏高校品牌专业建设工程资助项目(苏政发办[2014]82号)、江苏省科技厅重点研发计划项目(BE2016139)资助

Upgrading of Biomass Pyrolysis Oil and Its Oxidation Kinetics

MEI Deqing, WANG Cheng, REN Wuyue, DAI Pengfei, GUO Dongmei, DU Jiayi   

  1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2018-07-03 Revised:2019-03-03 Online:2019-09-25 Published:2020-04-01

摘要: 采用732型阳离子交换树脂为催化剂,通过预处理和催化酯化工艺对生物质热解油提质处理,获得精制生物油,分析比较生物质热解油提质前后的组分、低热值、黏度与pH值等燃料特性参数,并基于热重实验研究提质前后生物质热解油的氧化和燃烧特性。结果表明:对于100 mL粗制生物油,最佳的催化酯化反应条件为油/醇体积比2/1、催化剂用量8 g、反应温度50 ℃。GCMS检测结果表明,经过酯化工艺,粗制生物油的酯类和酮类组分分别增加了824%和310%,而酸类、酚类、大分子醚类等组分分别下降了858%、180%、366%。与生物质热解油相比,精制生物油的pH值升高至57,低热值增加75%,黏度降低101%。在空气氧化氛围热重条件下,与生物质热解油相比,精制生物油的起始质量损失温度滞后61 ℃,但其在高温氧化阶段的平均氧化速率提高65%,因而终了质量损失温度提前53 ℃。依据生物质热解油提质前后的氧化反应动力学特性,将其热重条件下的挥发氧化质量损失分为失水蒸发、慢速分解、快速燃烧和碳化等4个一级反应过程,精制生物油在失水蒸发阶段比生物质热解油挥发所需的活化能略高,但在慢速分解、快速燃烧和碳化阶段比生物质热解油挥发所需的活化能低,综合整个氧化燃烧过程可见精制生物油更易氧化和燃烧。

关键词: 生物质热解油, 催化酯化, 热重, 氧化, 热力学

Abstract: Refined biooil was obtained through pretreatment and catalytic esterification of biomass pyrolysis oil using 732 ionexchange resin as catalyst. Then, characteristics of biomass pyrolysis oil and refined biooil, including composition, low calorific value, kinematic viscosity and pH value were analyzed and compared with each other. Oxidation and combustion characteristics of biomass pyrolysis oil and refined biooil were also investigated under thermogravimetric conditions. Experimental results indicate that, for 100 mL crude biooil, the optimum catalytic esterification conditions are oil and alcohol volume ratio of 2/1, 8 g catalyst dosage and reaction temperature of 50 ℃. GCMS results suggest that, after catalytic esterification, the fraction of esters and ketones in crude biooil increases 824% and 310%, respectively. However, the fraction of acids, phenols and macroethers in crude biooil decreases 858%, 180% and 366%, correspondingly. Compared with crude biooil, pH value of refined biooil increases to 57, low calorific value increases 75%, and kinematic viscosity decreases 101%. Compared with the biomass pyrolysis oil, the results of thermogravimetric experiments under oxidative atmosphere show that, for refined biooil, its initial temperature of mass loss is enhanced 61 ℃, average oxidation rate is increased 65% at the stage of high temperature oxidation, and final temperature of mass loss is reduced 53 ℃. According to oxidation dynamic characteristics of biomass pyrolysis oil and refined biooil, the process of mass loss under thermogravimetric conditions can be divided into four stages: water evaporation, slow decomposition, rapid combustion and carbonization. It is found that the required activation energy for refined biooil volatilization at the stage of water evaporation is slightly higher than that of biomass pyrolysis oil. However, the required activation energy for refined biooil volatilization is less than that of biomass pyrolysis oil at other three stages, ie, stages of slow decomposition, rapid combustion and carbonization. It can be concluded that refined biooil is much easier to oxidize and combust if considering the entire oxidized combustion process.

Key words: biomass pyrolysis oil, catalytic esterification, thermogravimetric, oxidation, thermodynamics